Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.076 wR factor = 0.234 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Piperazinium(2+) *fac*-tris(salicylato- $\kappa^2 O, O'$)titanate(IV) monohydrate dimethylformamide solvate

In the title compound, $(C_4H_{12}N_2)[Ti(C_7H_4O_3)_3]\cdot H_2O\cdot C_3H_7NO$, the Ti^{IV} atom is chelated by three salicylate ligands in an octahedral geometry, the complex anion being the *fac* isomer. The cations, complex anions and solvent molecules are linked by hydrogen bonds into a layer structure.

Received 18 July 2005 Accepted 2 August 2005 Online 12 August 2005

Comment

In the preceding study (Fu *et al.*, 2005), tetrabutyl titanate and salicylic acid were allowed to react in DMF solution for several months to yield bis(dimethylammonium) *mer*-tris-(salicylato)titanate(IV), (I). In the present study, piperazine was deliberately added to the reaction to hasten the formation of the corresponding piperazinium salt, (II), which has been isolated in a crystalline form as a monohydrated DMF solvate (Fig. 1). In (II), the Ti atom has the three salicylate groups in a facial–octahedral arrangement. Whether a meridional compound existed in the product was not investigated. The anion, cation and solvent molecules interact by hydrogen bonds (Table 2) to give rise to a layer structure.

Experimental

Tetrabutyl titanate (0.34 ml, 1 mmol), salicylic acid (0.40 g, 3 mmol) and piperazine (0.09 g, 1 mmol) were dissolved in DMF (10 ml). The clear yellow solution was set aside for 3 d for crytals of (II) to separate out.

Crystal data

$(C_4H_{12}N_2)$ [Ti $(C_7H_4O_3)_3$]·H ₂ O·-	Z = 2
C_3H_7NO	$D_x = 1.455 \text{ Mg m}^{-3}$
$M_r = 635.47$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 1049
a = 9.021 (1) Å	reflections
b = 11.072 (1) Å	$\theta = 2.3-20.1^{\circ}$
c = 15.067 (2) Å	$\mu = 0.36 \text{ mm}^{-1}$
$\alpha = 75.545 \ (2)^{\circ}$	T = 295 (2) K
$\beta = 84.830 \ (2)^{\circ}$	Rod, yellow
$\gamma = 87.146 \ (3)^{\circ}$	$0.21 \times 0.13 \times 0.08 \text{ mm}$
V = 1450.8 (3) Å ³	

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan *SADABS* (Sheldrick, 1996) $T_{\min} = 0.383, T_{\max} = 0.972$ 8209 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.076$
$wR(F^2) = 0.234$
S = 1.01
5700 reflections
351 parameters

5700 independent reflections 3379 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 26.3^{\circ}$ $h = -9 \rightarrow 11$ $k = -13 \rightarrow 11$ $l = -18 \rightarrow 18$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1201P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ti1-O1	1.864 (3)	Ti1-O5	2.008 (4)
Ti1-O2	2.007 (3)	Ti1-O7	1.878 (3)
Ti1-O4	1.863 (3)	Ti1-O8	2.024 (3)
O1-Ti1-O2	84.7 (1)	O2-Ti1-O8	84.5 (1)
O1-Ti1-O4	97.0 (1)	O4-Ti1-O5	86.0 (1)
O1-Ti1-O5	168.3 (1)	O4-Ti1-O7	93.9 (1)
O1-Ti1-O7	96.9 (2)	O4-Ti1-O8	170.4 (2)
O1-Ti1-O8	92.6 (2)	O5-Ti1-O7	94.2 (2)
O2-Ti1-O4	96.2 (1)	O5-Ti1-O8	84.6 (1)
O2-Ti1-O5	83.7 (1)	O7-Ti1-O8	85.1 (1)
O2-Ti1-O7	169.5 (1)		
	. ,		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1 <i>w</i> −H1 <i>w</i> 1····O9	0.85	2.05	2.855 (5)	161
$O1w - H1w2 \cdot \cdot \cdot O8^{i}$	0.86	2.21	2.939 (5)	144
$N1 - H1a \cdots O3$	0.90	1.91	2.808 (5)	177
$N1 - H1b \cdots O10^{ii}$	0.90	1.96	2.728 (6)	142
$N2-H2b\cdots O6$	0.90	1.83	2.726 (5)	174
N2-H2 a ···O9 ⁱⁱⁱ	0.90	2.04	2.840 (6)	147
Symmetry codes: (i)	-x + 2, -y +	2, -z + 1; (ii	i) $-x + 1, -y + 1$	1, -z + 1; (iii)

-x + 1, -y + 2, -z + 1.

The three aromatic rings were refined as rigid hexagons of 1.39 Å sides so as to increase the data-to-parameters ratio to nearly 10. The $2\theta_{\text{max}}$ was set to 52.5° ; omitting high-angle data reduced the *R* values but reduced the data-to-parameters ratio unacceptably. The carbonbound H atoms were positioned geometrically [C-H = 0.93 Å for the aromatic H atoms and C-H = 0.96 Å for the methyl H atoms; $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})$ for the aromatic H atoms and $1.5U_{\text{eq}}(\text{C})$ for the

Figure 1

ORTEPII plot (Johnson, 1976), showing the numbering scheme of (II). Displacement ellipsoids are drawn at the 50% probability level.

methyl H atoms]. The nitrogen-bound H atoms were similarly allowed to ride on their parent atoms $[N-H = 0.90 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(N)]$. The water H atoms were placed at chemically sensible positions on the basis of hydrogen bonds $[U_{iso}(H) = 1.2U_{eq}(O)]$ and were fixed in position.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

- Bruker (2002). SAINT and SMART. Versions 6.3A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1730– m11732.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.