Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yun-Long Fu, ${ }^{\text {a }}$ Zhi-Wei Xu, ${ }^{\text {a }}$ Jia-Lin Ren ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala
Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.076$
$w R$ factor $=0.234$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Piperazinium (2+) fac-tris(salicylato- $\boldsymbol{\kappa}^{2} O, O^{\prime}$)titanate(IV) monohydrate dimethylformamide solvate

In the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Ti}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot-$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the $\mathrm{Ti}^{\mathrm{IV}}$ atom is chelated by three salicylate ligands in an octahedral geometry, the complex anion being the fac isomer. The cations, complex anions and solvent molecules are linked by hydrogen bonds into a layer structure.

Comment

In the preceding study (Fu et al., 2005), tetrabutyl titanate and salicylic acid were allowed to react in DMF solution for several months to yield bis(dimethylammonium) mer-tris(salicylato)titanate(IV), (I). In the present study, piperazine was deliberately added to the reaction to hasten the formation of the corresponding piperazinium salt, (II), which has been isolated in a crystalline form as a monohydrated DMF solvate (Fig. 1). In (II), the Ti atom has the three salicylate groups in a facial-octahedral arrangement. Whether a meridional compound existed in the product was not investigated. The anion, cation and solvent molecules interact by hydrogen bonds (Table 2) to give rise to a layer structure.

Experimental

Tetrabutyl titanate ($0.34 \mathrm{ml}, 1 \mathrm{mmol}$), salicylic acid ($0.40 \mathrm{~g}, 3 \mathrm{mmol}$) and piperazine ($0.09 \mathrm{~g}, 1 \mathrm{mmol}$) were dissolved in DMF (10 ml). The clear yellow solution was set aside for 3 d for crytals of (II) to separate out.

Crystal data

```
(C44 H12 N2)[Ti(C, (C)H44 O}\mp@subsup{)}{3}{}\mp@subsup{)}{3}{}]\cdot\mp@subsup{\textrm{H}}{2}{}\textrm{O}.
    \mp@subsup{\textrm{C}}{3}{}\mp@subsup{\textrm{H}}{7}{}\textrm{NO}
    Mr}=635.4
    Triclinic, P\overline{1}
    a=9.021 (1) \AA
    b=11.072 (1) \AA
    c=15.067 (2) \AA
    \alpha=75.545 (2)}\mp@subsup{}{}{\circ
    \beta=84.830(2)
    \gamma=87.146 (3)
    V=1450.8(3) \AA}\mp@subsup{\AA}{}{3
```

Received 18 July 2005
Accepted 2 August 2005
Online 12 August 2005

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.383, T_{\text {max }}=0.972$
8209 measured reflections

Refinement

Refinement on F^{2}
5700 independent reflections 3379 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-9 \rightarrow 11$
$k=-13 \rightarrow 11$
$l=-18 \rightarrow 18$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.234$
$S=1.01$
5700 reflections
351 parameters

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Ti1-O1	$1.864(3)$	Ti1-O5	$2.008(4)$
Ti1-O2	$2.007(3)$	Ti1-O7	$1.878(3)$
Ti1-O4	$1.863(3)$	Ti1-O8	$2.024(3)$
			$84.5(1)$
O1-Ti1-O2	$84.7(1)$	O2-Ti1-O8	$86.0(1)$
O1-Ti1-O4	$97.0(1)$	O4-Ti1-O5	$93.9(1)$
O1-Ti1-O5	$168.3(1)$	O4-Ti1-O7	$170.4(2)$
O1-Ti1-O7	$96.9(2)$	O4-Ti1-O8	$94.2(2)$
O1-Ti1-O8	$92.6(2)$	O5-Ti1-O7	$84.6(1)$
O2-Ti1-O4	$96.2(1)$	O5-Ti1-O8	$85.1(1)$
O2-Ti1-O5	$83.7(1)$	O7-Ti1-O8	
O2-Ti1-O7	$169.5(1)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 9$	0.85	2.05	2.855 (5)	161
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.86	2.21	2.939 (5)	144
$\mathrm{N} 1-\mathrm{H} 1 a \cdots \mathrm{O}$	0.90	1.91	2.808 (5)	177
$\mathrm{N} 1-\mathrm{H} 1 b \cdots \mathrm{O} 10^{\text {ii }}$	0.90	1.96	2.728 (6)	142
N2-H2b \cdots O6	0.90	1.83	2.726 (5)	174
$\mathrm{N} 2-\mathrm{H} 2 a \cdots \mathrm{O} 9^{\text {iii }}$	0.90	2.04	2.840 (6)	147
Symmetry codes: $-x+1,-y+2,-z$	$\begin{equation*} -x+2,-y+2,-z+1 \tag{iii} \end{equation*}$ (ii) $-x+1,-y+1,-z+1$;			

The three aromatic rings were refined as rigid hexagons of $1.39 \AA$ sides so as to increase the data-to-parameters ratio to nearly 10 . The $2 \theta_{\text {max }}$ was set to 52.5°; omitting high-angle data reduced the R values but reduced the data-to-parameters ratio unacceptably. The carbonbound H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93 \AA$ for the aromatic H atoms and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for the methyl H atoms; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic H atoms and $1.5 U_{\text {eq }}(\mathrm{C})$ for the

Figure 1
ORTEPII plot (Johnson, 1976), showing the numbering scheme of (II). Displacement ellipsoids are drawn at the 50% probability level.
methyl H atoms]. The nitrogen-bound H atoms were similarly allowed to ride on their parent atoms $\left[\mathrm{N}-\mathrm{H}=0.90 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\text {eq }}(\mathrm{N})\right]$. The water H atoms were placed at chemically sensible positions on the basis of hydrogen bonds $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$ and were fixed in position.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002). SAINT and SMART. Versions 6.3A. Bruker AXS Inc., Madison, Wisconsin, USA.
Fu, Y.-L., Xu, Z.-W., Ren, J.-L. \& Ng, S. W. (2005). Acta Cryst. E61, m1730m11732.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

